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HERMITE INTERPOLATION 
BY PYTHAGOREAN HODOGRAPH QUINTICS 

R. T. FAROUKI AND C. A. NEFF 

ABSTRACT. The Pythagorean hodograph (PH) curves are polynomial paramet- 
ric curves {x(t), y(t)} whose hodograph (derivative) components satisfy the 
Pythagorean condition x'2(t)+y'2(t) = 2(t) for some polynomial o(t) . Thus, 
unlike polynomial curves in general, PH curves have arc lengths and offset curves 
that admit exact rational representations. The lowest-order PH curves that are 
sufficiently flexible for general interpolation/approximation problems are the 
quintics. While the PH quintics are capable of matching arbitrary first-order 
Hermite data, the solution procedure is not straightforward and furthermore 
does not yield a unique result-there are always four distinct interpolants (of 
which only one, in general, has acceptable "shape" characteristics). We show 
that formulating PH quintics as complex-valued functions of a real parameter 
leads to a compact Hermite interpolation algorithm and facilitates an identifi- 
cation of the "good" interpolant (in terms of minimizing the absolute rotation 
number). This algorithm establishes the PH quintics as a viable medium for the 
design or approximation of free-form curves, and allows a one-for-one substi- 
tution of PH quintics in lieu of the widely-used "ordinary" cubics. 

1. INTRODUCTION 

The hodograph of a differentiable parametric curve r(t) = {x(t), y(t)} is the 
locus described by its derivative, r'(t) = {x'(t), y'(t)}. Whereas the geometric 
properties of hodographs yield valuable information [1] for curve design and 
analysis problems, we are concerned here with polynomial curves 

n n 

(1) x(t) = Zaktk y(t) - Zbktk 
k=O k=O 

whose hodographs exhibit a special algebraic property [10]-namely, they sat- 
isfy the Pythagorean condition 

(2) x'2(t) + y2(t) _ (t) 

for some polynomial a(t) . These Pythagorean hodograph (PH) curves have two 
computational advantages over polynomial parametric curves in general: (i) the 
arc length of any segment t E [to, t1] may be determined exactly-i.e., without 
numerical quadrature-through arithmetic operations on the curve coefficients 
{ak, bk} and the end-point parameter values to, t1 ; and (ii) the offset curves at 
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each signed distance d, defined by 

(3) rd(t) = r(t) + dn(t), 
where n(t) is the unit normal to r(t), admit exact rational parameterizations. 
(Offset curves arise in a variety of CAD/CAM applications; the fact that general 
polynomial curves do not have rational offsets [7] has prompted a profusion of 
more or less heuristic approximation schemes; see [18].) 

It may be feared that condition (2) will transpire to be unduly restrictive 
in terms of the shape flexibility of curves that enjoy the above attributes; such 
curves would then be of little practical value. As a preliminary counter-argument 
to this concern, we cite the fact [6] that, although the set of regular PH curves 
forms a proper subset of the set of all regular polynomial curves, the former 
actually has the same cardinality as the latter. 

In this paper we are more directly concerned with geometric arguments for 
the shape flexibility of PH curves. Specifically, we shall focus on establishing 
the suitability of the regular PH quintics for free-form design problems based on 
interpolating discrete point/tangent data. In the standard C2 cubic spline [2]- 
and in more sophisticated "shape-preserving" interpolation schemes, e.g., [12, 
13]-a key construction is the first-order Hermite interpolant r(t) to prescribed 
end points and "tangent vectors" 

(4) r(O), r(1) and r'(0), r'(1) 
on the unit interval t E [O, 1]. Expressing r(t) in the Bernstein-Bezier form 

n 
(5) r(t) = Pk () (1 - t)nfktk 

k=0 

on t E [0, 1] greatly facilitates this construction [4]: one merely assigns the 
first and last pairs of the "control points" {Pk} according to 

po = r(O), Pi = r(O) +-r'(O), 
(6) 1 

Pn-i = r(1) --r'(1), Pn = r(1). n 
Clearly, this consumes all degrees of freedom when n = 3, establishing the 
existence and uniqueness of cubic interpolants to first-order Hermite data. 

The simplest PH curves that are capable of inflecting and of matching arbi- 
trary first-order Hermite data are the quintics. The construction of such inter- 
polants is more involved than the simple assignment (6), however, and does not 
yield a unique solution for given Hermite data-there are always four distinct 
possibilities! While all four are rigorously consistent with the prescribed data, 
we observe empirically that only one of the interpolants has overall shape prop- 
erties in agreement with those intuitively suggested by the point/tangent data; 
the others exhibit a contorted "looping" behavior. 

The goal of this paper is to present a detailed account of the construction 
of PH quintic Hermite interpolants, including the formulation of quantitative 
criteria for automatically identifying the "good" solution among the various 
possibilities. Our analysis will ultimately be based on representing PH curves 
not as ordered pairs {x(t), y(t)} of real polynomials, but rather as complex- 
valued polynomials x(t) + iy(t) of a real parameter. This is not mathematical 
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sophistry: appealing to the algebra of complex numbers greatly simplifies the 
solution procedure and offers clearer insight into the geometrical properties of 
the resulting interpolants. Moreover, the complex formulation allows an exceed- 
ingly compact implementation of the PH quintic Hermite interpolation scheme 
in high-level computer languages that admit complex arithmetic. 

The PH quintic Hermite interpolation scheme has immediate application 
in the smooth interpolation of ordered sequences of points by piecewise PH 
curves. There is, however, another practical implication of this scheme that is 
perhaps more pertinent to the design of individual segments. The PH quintics 
are the subset of all degree-5 Bezier curves of the form (5) whose six control 
points Po, ... , p5 satisfy certain nonlinear constraints. Unfortunately, these 
constraints are not all amenable to simple geometrical interpretations [6, 10] 
and it is impractical to attempt to construct PH quintics by seeking to impose 
them upon general quintic control polygons. 

The Hermite interpolation scheme, however, may be regarded as a means of 
automatically "filling in" the interior points P2, P3 so as to yield a PH curve 
when only the exterior control points Po, Pi and p4, p5 are specified. Thus, the 
scheme allows a one-for-one replacement of "ordinary" cubics by PH quintics 
that have similar shape properties (provided the Hermite data are consistent 
with a smooth arc without inflections or loops-in the latter cases the PH quintic 
surrogate is often a "fairer" curve, in the sense of having a more even curvature 
distribution, than its cubic counterpart). 

The organization of this paper is as follows. Section 2 reviews the fundamen- 
tal properties of PH curves and the motivation underlying their introduction. 
In ? 3 we formulate the PH quintic Hermite interpolation problem and derive 
its explicit real solutions. We argue in ?4 that the "ordinary" cubic Hermite 
interpolant is not a viable comparison reference for identifying the "good" PH 
quintic interpolant among the four possibilities. The algebra of complex num- 
bers proves to be a concise and elegant medium for analyzing PH curves: in 
?5 we show that it offers a compact alternative to the (real) algorithm of ?3, 
while in ?6 a simple means of selecting the best interpolant is derived from 
the complex formulation. Finally, ?7 summarizes our results and makes some 
comments on their practical use. 

2. PYTHAGOREAN HODOGRAPH CURVES 

We commence by briefly recapitulating the definition and basic properties of 
PH curves (see [5, 6, 10] for further details). 

Definition 1. Let u(t), v(t), and w(t) be nonzero real polynomials such that 
u(t) and v(t) are relatively prime and not both constants. Then a parametric 
curve whose derivative is of the form 

(7) x'(t) = w(t)[u2(t) - v2(t)] and y'(t) = 2w(t)u(t)v(t) 
is called a Pythagorean hodograph (PH) curve. 

For any PH curve, the quantity x'2(t) + y'2(t) evidently coincides with the 
perfect square of the polynomial 

(8) a(t) = W(t)[u2(t) + 

and hence the three polynomials x'(t), y'(t), a(t) form a Pythagorean triple sat- 
isfying equation (2). Moreover, by a theorem on Pythagorean triples in unique 
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factorization domains [16], any hodograph {x'(t), y'(t)} that satisfies equation 
(2) for some polynomial a(t) must be of the form (7). 

If w(t) is nonnegative, we may identify (8) as the parametric speed 

a(t) = Ir'(t)l = x'2(t) + y2(t) - 
,dt 

of the PH curve, i.e., the rate of change of the curve arc length s with respect 
to the parameter t. Thus, PH curves differ from polynomial curves in general, 
in that ds/dt is just a polynomial function of t. 

(Since the elements of a Pythagorean triple (x', y', a) are of indeterminate 
sign, we can always assume that w(t) is nonnegative if it has no real roots 
of odd multiplicity; this affects only the sense of the curve parameterization. 
If it does have real odd-multiplicity roots, we must replace w(t) in (8) by 
its absolute value if we wish to identify a(t) with ds/dt. At any rate, we 
are primarily concerned with the regular odd-degree curves obtained by taking 
w(t) = 1. Real roots of w(t) give rise to irregular points-usually cusps-on 
the PH curve, where x'(t) = y'(t) = 0.) 

Remark 1. If w(t) is nonnegative, the cumulative arc length s(t) of the PH 
curve, measured from t = 0, is given by 

s(t)= j w(T)[u2(T) + v2(T)]dT, 

which is clearly also a polynomial function of t. 
It follows that the total arc length S of any PH curve over a given domain 

t E [to, t ] can be expressed rationally in terms of the curve coefficients and the 
initial and final parameter values to and ti. 

Remark 2. The differential characteristics of a PH curve-the unit tangent t 
and normal n, and the signed curvature K-are all rational functions of the 
parameter t. In terms of the polynomials u, v, w and their derivatives, we 
have (assuming w is nonnegative): 

(9) t ((u2-v2 ,2uv) (2uv, v2 - u2) K 2(uv'-u'v) 
U2 + V2 U2 + V2 w(u2 + V2)2 

Thus, the offset (3) to a PH curve clearly has a rational parameterization. 
(The above expression for K follows by substituting from (7) into the usual 
form K(t) = Ir'(t)K-3[r'(t) x r"(t)] * z for the curvature of a plane parametric 
curve [15], where z is a unit vector orthogonal to the plane of r(t).) 

These attractive properties of PH curves may be contrasted with those of the 
broader set of polynomial curves in general, for which the parametric speed is 
the irreducible radical Vx'2(t) + y'2(t), and hence the differential characteris- 
tics and offset curves are irrational, and the determination of arc length requires 
numerical quadrature. 

Discounting freedoms of rigid motion, scaling, and reparameterization, it 
transpires [10] that there is actually just one PH cubic. It corresponds to a 
classical curve, first studied in 1692 by Ehrenfried Walther von Tschirnhaus 
as the caustic for reflection of light rays by a parabola. The PH quartics are 
somewhat more flexible, but they always have a cusp (not necessarily within the 
domain of interest) and share with Tschirnhausen's cubic the constraint of being 
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convex, i.e., the curvature is of constant sign [10]. Also, even-degree curves are 
not suited to symmetric end-point Hermite interpolation. 

We must therefore look to the quintics if we desire free-form capability while 
retaining the advantages of PH curves. There are actually two distinct PH 
quintic types: in (7) we may choose u and v linear and w quadratic, or we 
may take quadratics for u and v and set w = 1. The former always exhibit 
cusps when w has real roots, and cannot inflect [10]. We therefore confine our 
attention to the latter: 

Proposition 1. A Bezier curve of degree 5 is a (noncuspidal) PH curve if and 
only if its control points can be expressed in the form 

Pi = Po + (u' - v', 2uovo), 

P2 = P1 + I (uouI - vOvI, uovU + uIvo), 

(10) P3 = P2 + l2 (u2_-vl2, 2ulvl) + (uou2-vOv2, uOv2 + u2vo), 

P4 = P3 + I(u1u2 - vIv2, u1v2 + u2vI), 

P5 = P4 + _(u -vi2, 2u2v2) 

in terms of real values (uO, U1, U2) and (vO, v1, V2), where po is arbitrary. 
Proof. Substituting w (t) = 1 and the quadratic polynomials 

u(t) = uo(l _ t)2 + u,2(1 - t)t + u2t2, 
v(t) =Vo(l _ t)2 + vI2(1 -t)t + V2t2 

into (7), we use the arithmetic procedures for polynomials in Bernstein form 
[9] to express x'(t) and y'(t) in the quartic Bernstein basis on t E [O, 1]. 
Integrating x'(t) and y'(t) and making use of the relation 

(12) (k) (1 _ t)n-ktkdt = n (n)1 ) (1-t)n+l-jtj 

for k = 0, ... , n [9] then gives expressions (10) for the control points {Pk } in 
the representation (5) of the resulting PH curve. The initial control point po, 
corresponding to the constants of integration, may be freely chosen. 5 

Bear in mind that neither (uo, U1, U2) nor (vo, v1, v2) may be set to (0, 0, 0) 
and they may not both be of the form (k, k, k) with k :$ 0, corresponding 
to the requirements that u(t) and v (t) be nonzero and not both constants. 
Furthermore, the inequality 

(13) (u2vo - uOV2)2 : 4(uovI - uIvo)(uIv2 - u2vI) 

must hold to ensure that u(t) and v (t) are relatively prime. 

Lemma 1. The PH quintic defined by (10) has either two real inflections or none, 
according to whether the quantity 

(14) A = (u2vO - uOV2)2 - 4(uovI - uIvO)(uIv2 -u2vI) 

is positive or negative. 
Proof. Substituting from (11) into the numerator k(t) = u(t)v'(t) - u'(t)v(t) 
of expression (9) for the curvature, k(t) is seen to be quadratic with Bernstein 
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coefficients ko = 2(uovI - ulvo), k1 = -(u2vO - uOv2), k2 = 2(uIv2 - u2v1). 
The corresponding discriminant k 2 - k0k2 is proportional to (14), and we note 
that A :$ 0 by virtue of the constraint ( 13). Thus, if A > 0, there are two real 
t values for which K vanishes, while if A < 0 there are none. 5 

3. THE HERMITE INTERPOLATION PROBLEM 

Discounting the arbitrary initial point po, we see from expressions (10) that 
the ten coordinates of the remaining control points PI, ... P5 depend upon 
the six quantities u0, ul, u2 and v0, vI, v2 . Thus, there exist four "constraint 
relations" among the control points, whose satisfaction distinguishes the PH 
quintics from quintic Bezier curves in general. These constraints have been 
explicitly derived elsewhere [6], based on the complex formulation used in ?5 
below. Unfortunately, unlike the case of PH cubics [10], they do not all admit 
fruitful interpretations in terms of the control-polygon geometry. 

We are concerned here with the construction of PH quintic arcs on t E [0, 1] 
that have prescribed end points r(0), r(l) and derivatives r'(0), r'(1) at those 
end points. As previously noted in ? 1, this amounts to specifying the first 
and last two control points po, Pi and p4, p5-our goal is thus to compute 
coordinates for the middle points P2, P3 in such a manner that the "constraint 
relations" are automatically satisfied. 

We shall rely exclusively on the Bernstein-Bezier form (5), which affords a 
numerically stable representation of finite arcs [8]. Note that the hodograph of 
(5) may itself be expressed as a Bezier curve of degree n - 1, 

r'(t) = n A APk (nk 1) (1 - t)n-l-ktk 

where the "control-polygon legs" APk for k = 0, ..., n - 1 are the forward 
differences of the control points: 

(15) APk = (AXk, AYk) = Pk+ -Pk. 

In terms of the representation (5), we may phrase the PH quintic Hermite 
interpolation problem as follows: 

Problem 1. Given arbitrary points Po :$ Pi and p4 $ p5, can two additional 
points P2 and p3 be found such that all six are expressible in the form (10) 
for real values of (uO, ul, u2) and (v0, vI, v2) ? 

The answer is in the affirmative-indeed, there is a multiplicity of choices 
for P2 and p3. In order to demonstrate this, we need the following result: 

Lemma 2. For all real values a and b, the real solutions to the equations 

(16) u2 _ v2 =a and 2uv= b 

may be expressed in the form 

(17) (uc v) s n (ae sign(b) w b) 

where c = V/a2 +-F2 and we take sign(b) =il when b = 0 . 
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Proof. Suppose first that a :$ 0 and b :$ 0. Then u :$ 0, and from the second 
equation we may substitute v = b/2u into the first, giving the biquadratic 

(18) U4 -au2 b2 = o 

for u . Setting c = /a2+-b2, we then have u2 = (a c), and since a - c < O 
and a + c > 0, the real solutions to ( 18) are seen to be 

u=+ (c+a). 

We obtain the corresponding values of v by substituting into v = b/2u: 

v = i b =+sign(b) [(c-a). 
2 (c+a) 

Thus, when a and b are both nonzero, the real solutions agree with (17). We 
now show that (17) also gives the real solutions in cases where a or b vanishes. 
First, if a = b = 0, the only solution is (u, v) = (O, 0), which clearly agrees 
with (17). If a = 0 5 b, the first equation gives v = +u, and on substituting 
into the second, we obtain +2u2 = b, which has real solutions u = + ' Ibi. 
Since b ? 0, corresponding v values are obtained from v = b/2u, giving 

(u, v) -= b (+/j , sign(b) Il) 

consistent with (17). Finally, if a :? 0 = b, either u or v must vanish and the 
solutions to ( 16) are thus of the form 

(u ~~ (v)a = { 
0 ) when a > 05 

i(O, v/=a) when a < 0. 

With the convention that sign(b) = + 1 when b = 0, the above may also be 
regarded as a special case of equation (17). o 

Geometrically, the solutions to equations (16) are the intersections of two 
rectangular hyperbolae in the (u, v) plane, both centered on the origin but 
with asymptotes at 450 to each other; when a = 0 or b = 0 these hyperbolae 
degenerate into the pairs of lines defined by their asymptotes. 

Proposition 2. Problem 1 always has real solutions, given by thefollowing values 
for the coefficients (uo, u1, U2) and (vO, vI, V2) 

(uo, vo) = + X ( IAPo I + /AxO, sign(AYO) IAPOl - AXO ) 

(19) (U2 V2) = +X ( AP4 +Ax4, sign (AY4) IAIP4I -A AX4) 

(Ul, VI) =-(UO + U2, VO + V2)+ ( c+asign(b) c-a4) 

where the quantities a, b, and c = Va2 + b2 are defined by 

a = 9 (U2 - V2 + U2 - V2) + 8 (UOU2 - VOV2) + - (X4 - XI), 
(20) b=9(1u6v u 2v_)+ u 2 u 2vo)+1 (y5-y1). 
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Proof. Since po, P1 and p4, p5 are specified, Lemma 2 can be immediately 
applied to the x- and y-components of the first and last equations in (10) with 
(a, b) = (5Axo, 5Ayo) and (5Ax4, 5Ay4), respectively, to obtain the quoted 
expressions (19) for (uo, vo) and (u2, v2), where I APkI = \I(Axk)2 + (AYyk)2. 

Writing P4 - PI = (P4 - P3) + (P3 - P2) + (P2 - P1) and substituting from ( 10) for 

each of the three terms on the right, we see that the quantities (ul, vl) satisfy 

the simultaneous equations 

~21 X4 _- xI) = u2-V2 + V(uo + u2)ui-3(vo + v2)vI + I(uou2 - vOv2), 

I'5(Y4i-Y) = 2u1vI + 3(vo + v2)uI + 3(uo + u2)vI + I(uOv2 + u2vo), 

and if we make the change of variables 

U1 = U1 + 4(UO + U2) and fvI = vI + 3(vo + v2), 

we find that the transformed equations for i1 and DI assume the form (16) 

with right-hand sides a and b given in terms of the known values of (uo, vo) 

and (u2, v2) by expressions (20). Hence, with c = Wa2 + b2, the solutions to 
equations (21) are of the form given in the last expression of (19). o 

Remark 3. Three independent sign ambiguities arise in expressions (19). Thus, 

it might appear at first sight that there are eight PH quintics matching pre- 
scribed end points and tangents. However, if (uo, ul, u2) and (vo, vI, v2) 

are the coefficients obtained for a specific choice of signs, a careful inspection 

of (19) reveals that the converse choice simply yields (-uo, -u1, -u2) and 
(-vO, -vI, -v2). Since expressions (10) involve only homogeneous quadratic 

forms in the coefficients of u(t) and v(t), the control points they define are 

invariant under a sign reversal of those coefficients. Thus, there are actually 
just four distinct Hermite interpolants-they may be generated without replica- 

tion by arbitrarily fixing the sign in any one of the three expressions (19) and 

exercising the sign freedoms of the other two. 

++ ++ 4.- 

(a) (b) 

FIGURE 1. Examples of the four different PH quintic inter- 
polants to given end points and end derivatives 
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Figure 1 shows examples of the four PH quintics that match given first- 
order Hermite data (we take a fixed sign in the (ul, v1) expression in (19) 
and obtain the four PH quintics from the sign choices ++, +-, -+, -- in 
the expressions for (uo, vo) and (u2, v2)) . While the four interpolants are all 
consistent with the Hermite data, they are otherwise markedly dissimilar. In 
view of this, we now draw attention to a surprising feature of these solutions: 

Corollary 1. The four PH quintics matching prescribed first-order Hermite data 
can be grouped into two pairs such that the members of each pair have identical 
total arc lengths, given by 

(22) S = 8(IAPoI + 1AP41) - T12 (UOU2 + VOV2) + 2 C. 
Proof. Substitute from (19) into the expressions given in [5] for the Bernstein 
coefficients of the parametric speed a(t) and the total arc length S in terms 
of uO, ul, u2 and vO, vI, v2 to obtain expression (22). It can then be verified 
from (22) that the value of S is unaltered upon simultaneously reversing the 
choice of signs for (uo, vo) and (u2, v2) in equations (19). o 

4. COMPARISON WITH CUBICS 

Among the four PH interpolants in the cases shown in Figure 1, one choice of 
signs seems to give a solution with more "reasonable" shape characteristics than 
the others. However, the appropriate choice varies with the specified Hermite 
data in a manner that is not easy to fathom a priori. Thus, we need to formulate 
a quantitative criterion for identifying the "good" solution. 

We begin by comparing shape properties of the four PH quintic Hermite 
interpolants with that of the unique "ordinary" cubic Hermite interpolant. In 
taking this approach, we are motivated simply by the current widespread use 
of cubic Hermite interpolation; it is not our intent to impute "ideal" shape 
characteristics to the latter. Indeed, we shall ultimately be obliged to reject 
comparison with cubics as a basis for identifying the "good" PH quintics, but in 
view of the inevitability of comparisons between cubic and PH quintic Hermite 
interpolation schemes, the following discussion seems warranted. 

In Figure 2 (next page) we show the Gauss maps [17] for the curves in Figure 
1, which describe the rotation of the tangent t as the curves are traversed. Since 
the initial and final tangent directions are fixed by the Hermite data, the Gauss 
maps of the various PH quintic interpolants clearly differ from each other, and 
from that of the cubic, only in the manner in which they "wind" between these 
limits (inflections correspond to sudden reversals of the Gauss map). We may 
characterize the net amount of winding of the Gauss map as follows: 

Definition 2. The rotation number 3 of a plane C2 curve r(t) = {x(t), y(t)} 
defined on t E [0, 1] is given by 

(23) I K(t)Ir'(t)I dt. 27r J 

Rotation numbers are a classical means [20] of characterizing the global shape 
properties of curves. They indicate the fraction of a full revolution that the 
curve tangent t, or normal n, executes upon traversing a curve (this follows 
from the familiar interpretation, K = dO/ds, of the curvature as the derivative 
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(a) (b) 
FIGURE 2. Gauss maps of the PH quintic Hermite interpolants 
shown in Figure 1 

with respect to arc length s of the angle 0 that t or n makes with a fixed 
direction). For simple closed curves, the "theorem of turning tangents" [3] states 
that R = ? 1 , depending on the curve orientation. Here we are concerned with 
open curves, for which 3 is generally not an integral value. 

Definition 3. The Cauchy index IabID(t) of a rational function 4>(t) on an inter- 
val t E [a, b] is equal to the number of poles at which 4?(t) jumps from -oo 
to +oo minus the number at which it jumps from +oo to -oo, as t increases 
from a to b. 

Note that poles at the interval end points a and b do not contribute to 
Iab'D(t). Also, if ??(t) = q(t)/p(t), where gcd(p, q) = 1, only odd-multiplicity 
roots of the denominator p(t) contribute to the Cauchy index [14]. 

Lemma 3. Let p(t) and q(t) be polynomials, not both constants, such that 
gcd(p, q) = 1. Then the value of the definite integral 

b= J 
p(t)q'(t) - p'(t)q(t) dt 

p2(t) + q2(t) 

is given in terms of the rationalfunction ?(t) = q(t)/p(t) by 

J = tan- l ?(b) - tan- l ?(a) - 7fabID(t). 

Proof. We set (D = q/p, so that d(/dt = (pq' - p'q)/p2, and hence we have 

(24) |P 2 + q2 dt =|I +dV2 = tan- 1 (, 

where we take tan-1d E [-7r/2, +7r/2]. Note, however, that the change of 
variables t -+ = q/p does not define a bijective map from t E [a, b] to 
(D E [4D(a), 4?(b)] if p(t) has roots between a and b . In such a case, the range 
of integration must be split at the roots tl, ..., tN E (a, b) of p(t), and (24) 
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can then be applied to each subinterval delineated by those roots: 

(Di dD N-i k+1 doD (b) d1D 

(25) 1+~~a) =2+ 

where ok- and ok+ are the left- and right-hand limits (either -oo or +00) of 
?D(t) at the pole tk . Making use of (24) and writing tan-' D = sign(cD )ir/2, 
we see that (25) can be expressed as 

N 

(26) J = tan-I4(b) - tan-I (a) + 2 1[sign((D-) - sign(cD )]. 
k=1 

Now on traversing each pole tk, the value of sign((Dj) - sign(cD ) is -2 or 
+2 if ?D(t) jumps from -oo to +oo or from +oo to -oo, respectively, but 
is otherwise zero. The sum in (26) is thus simply -2Iab(t). o 

In general, IabD(t) is computed by invoking the Euclidean algorithm to con- 
struct a Sturm sequence for p(t) and q(t), and then taking the difference be- 
tween the number of sign variations of this sequence evaluated at t = a and 
t = b [11]. To compare the rotation numbers of PH quintics and "ordinary" 
cubics, however, a simpler approach will suffice. 

Corollary 2. The rotation number of the PH curve defined on t E [0, 1] by (7) 
with w(t) = 1 may be expressed in terms of T(t) = v(t)/u(t) as 

(27) = tan-I(1) - tan-1I(O) -I,'T(t). 

Similarly, for the general polynomial curve (1) on t E [0, 1] we have, in terms 
of e(t) = y'(t)/x'(t), 

(28) 1 [tanI9(1) - tan 9(O) - Io9(t)] 

Proof. The above expressions for 3 follow directly from Lemma 3 and 
the formulae K = 2(uv' - u'v)/(u2 + v2)2 and Ir'l = u2 + v2, or K = 

(x'y" -_ Xy)/(X'2 + y'2)3/2 and r'l = (x'2 + y/2)1/2, as appropriate. O 

For cubics and PH quintics, 9(t) and T(t) are evidently just quadratic 
rational functions. Now if ?(t) = q(t)/p(t) , where p(t) and q(t) are relatively 
prime quadratics, Iab(t) can be computed by inspecting the sign of q(t)/p'(t) 
at the simple roots of p(t) between a and b . For a quadratic p(t), elementary 
arguments based on the "variation-diminishing property" [19] show that if 7 
is the number of sign variations in the Bernstein coefficients bo, b1, b2 of p(t) 
on t E [a, b] and A = bi - b2bo is its discriminant, then p(t) has one or two 
simple roots between a and b if A > 0 and %" = 1 or 2; otherwise, it has 
none. 

The rational functions P(t) = v(t)/u(t) and 9(t) = y'(t)/x'(t) occurring in 
(27) and (28) are closely related to the angle 0(t) that the curve tangent makes 
with the positive x-axis (-7r < 0 < +fr). For the PH curve, we have 

0(t) = 2tan-1P(t), 
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while for the general polynomial curve, 

tan-'I(t) if x'(t) > O, 

tan-'10(t) + sign(y'(t))7r if x'(t) < 0. 

Lemma 4. The rotation number of an ordinary cubic satisfies -1 < R < + 1, 

while that of a PH quintic satisfies -2 < 3 < +2. 
Proof. We show that, for relatively prime quadratics p(t) and q(t), 

-27r < 2(t) + q2(t) ( dt < +27r 

-the lemma then follows from the fact that Kjr'l = (x'y" -x"'y')/(x'2 +y'2) 
for the cubic, while KlrlI = 2(uv' - u'v)/(u2 + v2) for the PH quintic. For 
brevity, we argue geometrically. The locus x = p(t), y = q(t) for t E [a, b] 
is a parabolic arc, and the radius vector from the origin to a point of that 
arc makes an angle 0 with the positive x-direction, where tan 0 = q(t)/p(t) . 
The integrand (pq' - p'q)/(p2 + q2) is thus simply dO/dt, and it is evident 
geometrically that, regardless of the location or shape of the arc, the radius 
vector cannot execute more than a full revolution in tracing it out. El 

For given Hermite data, the rotation numbers of the four PH quintics differ 
from that of the cubic only by integral amounts, and one might hope that there 
is always a unique PH quintic whose rotation number coincides precisely with 
that of the cubic-this quintic being the "good" interpolant. However, some 
simple examples suffice to show that this conjecture is false: 

Example 1. There may not be a unique interpolant whose rotation number agrees 
with that of the cubic. Consider the Hermite data 

r(O) = (O, 5), r'(O) = (25, -15), 

r(l) = (-3, -4), r'(l) = (25, -15), 

for which we have control points po = (0, 5), Pi = (5, 2) and p4 = (-8, -1), 
p5 = (-3, -4). Here, R = 0 for the cubic, but there are two PH quintics for 
which R vanishes, corresponding to the sign choices ++ and -- . As seen 
in Figure 3a, the latter choice clearly gives an undesirable interpolant. 01 

Example 2. Interpolants whose rotation numbers agree with that of the cubic do 
not necessarily have the best "shape" characteristics. For the data 

r(O) = (-6, -1), r'(0) = (30, 25), 

r(l) = (I , 0) 5 r'(1) = (25,-30), 

i.e., control points po = (-6, -1), P1 = (0, 4) and p4 = (-4, 6), p5 = (1, 0), 
we have R = 3/4 for the cubic, while for the four PH quintics the sign choices 
++, +-, -+, -- give R = -1/4, 3/4, -5/4, 7/4. In Figure 3b we see that 
the +- solution, having the same R value as the cubic, is indeed most similar 
in shape to the latter, but the ++ solution (which inflects but does not intersect 
itself) is arguably a preferable interpolant. 0 

It might be thought that, instead of using just the rotation number R, a 
detailed comparison of the Gauss maps for the four PH quintics with that of 
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(a) (b) 

FIGURE 3. Comparison of PH quintic Hermite interpolants 
(bold curves) with the unique cubic interpolant (light curve) 
for: (a) the data of Example 1; and (b) the data of Example 2 

the cubic might serve to identify the "good" PH quintic. One might hope, for 
example, for a unique PH quintic whose Gauss map is isomorphic to that of the 
cubic, i.e., there is a one-to-one correspondence between reversals (inflections) 
and a common sense of rotation between them. However, it is again possible to 
construct examples in which none of the PH quintics has the same number of 
inflections as the cubic, or in which the aesthetically pleasing PH quintic differs 
from the cubic in its number of inflections. 

5. SOLUTION USING COMPLEX REPRESENTATIONS 

Evidently, comparing PH quintic Hermite interpolants with their ordinary 
cubic counterparts is not a fruitful approach; the four PH quintics must be 
judged against "absolute" criteria in order to identify the one with the most de- 
sirable shape properties. To facilitate the formulation and analysis of such 
criteria, we now adopt a radically different approach: instead of regarding 
plane curves r(t) as pairs {x(t), y(t)} of real polynomials, we express them as 
complex-valued polynomials x(t) + iy(t) of a real parameter. 

Remark 4. Henceforth we use bold characters (e.g., z) for complex numbers 
and italics for explicitly real quantities. Of course, the former always admit 
vectorial interpretations, but if they appear in products, quotients, radicals, 
etc., (ZIZ2, Z1/Z2, , ...), the algebra of complex numbers must be invoked. 

Lemma 5. In the complex representation, the regular PH curves correspond to 
those curves whose hodographs are perfect squares of complex polynomials having 
relatively prime real and imaginary parts. 
Proof. The square of the complex polynomial p(t) = u(t) + iv(t) is p2(t) - 

u2(t) - v2(t) + i2u(t)v(t), whose real and imaginary parts are seen to be of 
the Pythagorean form (7) with w (t) = 1. Conversely, any complex hodograph 
having real and imaginary parts of the form (7) with w (t) = 1 is simply the 



1602 R. T. FAROUKI AND C. A. NEFF 

square of the complex polynomial p(t) = u(t) + iv(t). Moreover, we note that 
gcd(u, v) = I if and only if gcd(u2 - v2, 2uv) = 1. 1 

Thus, the hodograph of any regular PH quintic may be expressed as 

(29) r'(t) = k[(t - a)(t - b)]2 

for certain complex numbers a, b, and k. To guarantee that Ir'(t) I : 0 for all 
real t, the numbers a and b should have nonzero imaginary parts. Further, 
a and b should not be conjugates, since the argument of r'(t) would then be 
independent of t, corresponding to a degenerate linear locus. 

Remark 5. The correspondence between expression (29) and equations (7) with 
w(t) = 1 amounts to identifying the polynomials u(t) and v(t) with the real 
and imaginary parts of \/k(t - a)(t - b). In particular, the Bernstein coefficients 
uo, ul, u2 and vO, vI, v2 correspond to the real and imaginary parts of the 
complex numbers 

abk-a - Ak_[a( l - b) + (I1 - a)b], Ak(1 -a) (I - b)- 
Definition 4. Arbitrary complex Hermite data r(O), r'(0) and r(1), r'(1) is re- 
duced to the standardform 

r(O) = 0, r'(0) = do and r(l) = I, r'(1) = d, 
by (i) subtracting r(O) from the end points; and (ii) dividing the end points 
and end derivatives by r( 1) - r(O) . 

Thus, the shape of the Hermite interpolants depends only on the relative 
magnitudes and orientations of the end derivatives do and d, . Since it is a 
trivial matter to transform to and from the original coordinate system by the 
appropriate complex arithmetic operations, we shall consider henceforth only 
the interpolation of Hermite data in standard form. 

By differentiation, it is readily verified that the PH quintic corresponding to 
the hodograph (29) may be expressed as 

(30) r(t) = 
k 

[(t - a)5 - 5(t - a)4(t - b) + l0(t - a)3(t - b)2] + c, 

where, in order to satisfy r(O) = 0, the constant of integration c is given by 

(31) C = k (a 5- 5a4b + 10 a3b2). 

Thus, in standard form the problem of Hermite interpolation by PH quintics 
amounts to computing complex constants a, b, and k such that the curve 
defined by (30) and (31) satisfies r'(0) = do, r'(1) = d , and r(l) = 1 , and then 
deciding which of the resulting solutions gives the "best" curve. 

Proposition 3. Let p be either of the two complex numbers defined by 

(32) p2 do 
d, 

and hence let a be either of the two solutions to the quadratic equation 

32-3(1 +p)a+6p2+2p+6--=0. 
di 

Then if u1I and #2 are the two roots of 

(34) 2 -a+ p =0, 
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the values of a and b in (30) are given by 

(35) a= /1 and b- / 2 

/11+ 1 /12+1 

The corresponding value of k is then 

(36)k=do i 
a2b2 (1 -a)2(1 -b)2 

and c is given in terms of a, b, and k by expression (31). 
Proof. From (29) we see that 

(37) ka2b2= do and k(l - a)2(1 - b)2 = di, 

while the condition r( l) = 1 may be cast in the form 

k{[6(1 - a)2 - 3(1 - a)a + a2](1 - b)2 

(38) + [-3(1 - a)2 + 4(1 - a)a- 3a2](1 - b)b 

+ [(1 - a)2 - 3(1 - a)a + 6a2]b2} = 30. 

We begin by using expressions (37) to eliminate b and k from equation (38); 
this is accomplished by substituting 

b2 -do (1 - b)b = N/d_Soid (1 - b)2 = dI 

The resulting equation depends only on do, d1 and the ratio ,# = a/(1 - a): 

di (,2 - 3u + 6) - dOd(3 - 4 + 3#-1) + do(6 - 3#-1 + -2) = 30. 

With p2 = do/di, the above may be further simplified to give the quadratic 
equation (33) by setting a = # + p#-r . Once a root a of (33) has been 
computed, the corresponding values of #i may be obtained by inverting the 
relation a = ,# + p,-l , i.e., by solving equation (34). Note here that, since 
equations (37) and (38) are symmetric in a and b, the two roots #1 and #2 
of (34) must identify values of #i appropriate to corresponding values of a and 
b. The latter are obtained by inverting the relations #1 = a/(1 - a) and #2 = 

b/(1 - b), i.e., by expressions (35). Finally, knowing a pair of corresponding 
values for a and b, the appropriate value (36) for k is obtained by substituting 
t= 0 or t = 1 into (29). o 

Not surprisingly, the procedure described in Proposition 3 generates four 
PH quintics, corresponding to distinct pairs (a, b) of complex numbers, for 
any given complex values do and d1 . (Four a-values may occur in equation 
(34), since these values are roots of the quadratic (33) in which the coefficient 
p assumes the two values defined by (32).) Compared to the real-arithmetic 
approach in Proposition 2, the complex formulation yields a concise solution. 
Moreover, we will show that the location of a and b relative to the interval 
[0, 1] gives insight into the shape properties of the four possible interpolants, 
and offers a fairly simple basis for identifying the "good" solution. 

Remark 6. Expressions (29) and (30) can be cast in Bernstein-Bezier form to 
give complex control points for the hodograph and curve. Setting t - a = 
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-a(1 - t) + (1 - a)t in (29), and likewise for t - b, and expanding gives 

ho = ka2b2, 

h1 = - I kab(a + b - 2ab), 
h2= Ik[(a + b - 2ab)2 + 2a(1 - a)b(1 - b)], 

h3 = - Ik(l - a)(1 - b)(a + b - 2ab) , 

h4= k(l - a)2(1 - b)2, 

for the hodograph control points, and in terms of the above the control points 
of the PH quintic are [9]: 

1k-1 
Pk = Zhj fork = 1, ...,5. 

j=o 

Here we take po = 0 as the constant of integration; note also that p5 = 1 when 
a, b, and k are computed according to Proposition 3. 

A somewhat simpler construction of the Hermite interpolants results if we 
commence with the form 

r'(t) = [60(1 - t)2 + f(1 - t)t + blt2]2 

in lieu of expression (29). Here, 60 and 61 are square roots of do and d1, 
while fi is a root of the equation 

2 + 3yf8 + y2 + 5(do + di) - 30 = 0, 

where y = 60 + 61 . Although simpler, this approach does not directly yield 
information on the location of a and b in the complex plane that we need below 
to differentiate among the solutions. (It is, however, better suited to formulating 
a priori constraints on the Hermite data guaranteeing that the "good" interpolant 
has certain desirable properties-this is a substantive problem in its own right, 
which we hope to address in a future study.) 

6. THE ABSOLUTE ROTATION NUMBER 

We now consider the identification of the "best" of the four interpolants that 
Proposition 3 yields for given Hermite data. For each solution (a, b, k) the 
hodograph (29) indicates that the curve tangent at point t makes an angle 

(39) 0(t) = arg(k) + 2 arg(a - t) + 2 arg(b - t) 

with the positive real axis (where -7r < arg(z) < +ir). We will differentiate 
among the four solutions according to the variation of 0(t) over t E [O, 1]. 

As noted in ?4, the four PH quintics must be judged according to criteria 
that do not depend upon comparison with the variation of 0(t) for the unique 
cubic interpolant. Furthermore, it is clear from examples such as those shown 
in Figures 1 and 3 that minimizing the net variation of 0(t), as expressed by 
the rotation number (23), is not a satisfactory criterion-cases in which large 
amounts of positive and negative rotation nearly cancel each other may be as 
undesirable as those exhibiting too much rotation of a fixed sense. 

Consequently, we are motivated to introduce the absolute rotation number 

(1 j 
(40) -Wabs = 2X | K(t) I Ir'(t)|Idt 
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as the quantity whose minimization identifies the "best" interpolant. 3abs mea- 
sures the total amount-i.e., regardless of sense-of "winding" of the curve tan- 
gent. If K is of constant sign over t E [0, 1], then 3abs is just the absolute 
value of the ordinary rotation number (23). If the curve has inflections, how- 
ever, the integral (40) can only be evaluated by breaking it up at each of the 
values tl, ... , tN E (0, 1) where K changes sign. 

Instead of using the methods of ?4, we appeal directly to expression (39) for 
the tangent angle to compute 3abs, Since (40) does not depend on the reference 
direction from which 0(t) is measured, we may drop the constant arg(k) and 
write 0(t) = 2[arg(a - t) + arg(b - t)]. Note that for a regular curve, satisfying 
r'(t) : 0 for all real t, a and b must have nonzero imaginary parts (and are 
not conjugates if the Hermite data is nondegenerate). 

Proposition 4. Let Zuzv be the angle subtended at vertex z of a triangle in the 
complex plane whose other vertices are at values u and v on the real axis. Then 
for the PH quintics constructed according to Proposition 3 we have 

1 
Mabs= -(ZOal + ZObl), 7r 

when a and b lie on the same side of the real axis, and 
lN 

Sabs = f jZtkatk+l - Ztkblk+1I 
k=O 

where to = 0, tN+1 = 1, and tl, ... , tN (N < 2) are the ordered roots of 

(41) Im(a + b)t2 - 2 Im(ab)t + Im(lal2b + lb12a) = 0 

on t E (O, 1) when a and b lie on opposite sides of the real axis. 
Proof. If a and b lie on one side of the real axis, arg(a - t) and arg(b - t) 
are either both positive and monotone increasing with t, or both negative and 
monotone decreasing with t. Thus, K cannot vanish, and we may write 

-abs = [2 1[2arg(a - 1) - arg(a) I + 21arg(b - 1) - arg(b) ] 

= -(ZOal + ZObl). 7r 
If a and b lie on opposite sides of the real axis, there may be zero, one, 
or two inflections on t E (0, 1). In the complex formulation, the curvature 
can be expressed as Ki(t) = Ir'(t)1-3Im(f'(t)r"(t)), and by substituting from 
(29) it may be verified that the numerator of this expression is proportional to 
the quadratic (41), whose simple roots identify inflections. Geometrically, the 
parameter values t corresponding to inflections are points on the real axis from 
which the ratio of the distances to a and b has the fixed value 

la - tl/lb - tj = -Im(a)/Im(b). 

(Note that the discriminant A = -4 Im(a)Im(b) A- b12 of (41) is positive in 
this case, so the number of inflections on t E (O, 1) equals the number of 
sign variations in its Bernstein coefficients.) If inflections at t1, ... , tN are 
identified, and we set to = 0 and tN+1 = 1, then 

N 

Sabs = 2r 2 21arg(a - tk+1) - arg(a - tk) + arg(b - tk+1) - arg(b - tk)t, 
k=0 
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0~~~~~~~~~~~~~~~~ 
0 

0 

0 

0 

FIGURE 4. The four PH quintic interpolants to prescribed Her- 
m ite data on the unit interval (the dashed line). The open dots 
indicate the locations of the roots a and b of the complex 
hodograph given by expression (29) 

and since arg(a - tk+1) - arg(a - tk) and arg(b - tk+1) - arg(b - tk) Must be of 
opposite sign, and equal in absolute value to Ztkatk+1 and Ztkbtk+l , we have 

l N 

R'abs = lZtkatk+i - Ztkbtk+ 1- I 

7r~~~~~, 

k=0 

Note that ZOal and ZObl correspond to h p - arg(eib) and Hr - 

41m1 and it2 being the roots of (34). Typically, configurations where a and b 
lie on opposite sides of the real axis and are not close to the interval t e (0, 1) 
give the smallest pab, values; see the example shown in Figure 4. The upper 
bound s abc = 2 is approached when either: (i) a and b are near to and on 
the same side of t E (0, 1) ; or (ii) a and b are near to but on opposite sides 
of distinct subintervals t E (tk, tk+1) delineated by the inflections. 

7. CONCLUDING REMARKS 

By means of the PH quintic Hermite interpolation scheme, smooth (C1) 
piecewise PH curves may be constructed that interpolate sequences of point/ 
tangent data. Such curves then have exactly computable arc lengths and offset 
curves; the details of these computations may be found in earlier papers [5, 1a0. 

If only points are prescribed, one way of associating a "tangent vector" 
(derivative) with each is by solving the tridiagonal linear system that arises in 
imposing curvature continuity at each node of an ordinary C2 cubic spline [2]. 
Figure 5 compares the piecewise PH quintic interpolating data for a model air- 
foil ccnstructed thus (the tgood" interpolants between consecutive points being 
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PH quintics 

cubic spline 

FIGURE 5. Comparison of piecewise PH quintic (upper) and cu- 
bic spline (lower) fits to point data for an airfoil, with specified 
initial/final derivatives at the trailing edge (the tangent vectors 
for the piecewise PH curve are taken from the cubic spline). 
The two curves are essentially indistinguishable, but the piece- 
wise PH interpolant allows an exact representation of its offsets 

identified as described in ?6) with the corresponding cubic spline. The curves 
are virtually indistinguishable, as is generally the case when the given data does 
not suggest inflections or strong curvature variations. 

Other methods for selecting tangent vectors, such as those used [12, 13] in 
"shape-preserving" interpolation schemes, are available. Note that if precise 
C2 continuity is desired of piecewise PH interpolants, one must contend with 
systems of nonlinear equations [5], and the resulting curves would not be true 
"splines" in the sense of minimizing an (approximate) "energy" integral [2]. 
Nevertheless, for many practical curve design/approximation problems, exact 
continuity of the curvature is not essential or necessarily even desirable: while 
K is strictly continuous for an ordinary C2 cubic spline, this does not guarantee 
a fair curve, in the sense that K may exhibit a "bumpy" global behavior. The 
example shown in Figure 6 (next page), for which we use the "not-a-knot" 
condition [2] instead of specifying end derivatives, illustrates this point. 

As noted in ? 1, a primary use envisaged for the Hermite interpolation scheme 
is one-for-one replacement of the defacto "standard" Bezier cubics by PH quin- 
tics having similar "shape" properties. This allows one to take advantage of the 
exact rectification and offset properties of PH curves in applications where such 
requirements are of paramount importance. In fact, empirical evidence sug- 
gests that the "good" PH quintics have better shape (i.e., a more even curvature 
distribution) than their cubic counterparts. 
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curvature \ 

FIGURE 6. Comparison of piecewise PH quintic (bold curve) 
and C2 cubic spline (light curve) fits to point data, and the 
curvature distribution along them-the two curves are super- 
posed and thus virtually indistinguishable. While the curvature 
of the piecewise PH curve is not precisely continuous, the small 
jumps in K at the nodes are perhaps insignificant in view of the 
overall "bumpy" variation of K 
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